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TECHNICAL NOTE 13-229 

b 

m R I M E N T A L  INVESTIGATION OF THE EFFECT OF ASPECT R A T I O  

AND MACH NUMBER ON TKE FLUTTER O F  CANTILFVER WINGS' 

By E. Widmayer, Jr., W. T. Lauten, Jr., and S. A. Clevenson 

The r e s u l t s  of same wind-tunnel experiments t o  inves t iga t e  t h e  
e f f e c t s  of aspect r a t i o  and Mach number on the  f l u t t e r  of uniform, 
unswept, can t i l eve r  wings are reported. Models having aspect  r a t i o s  
ranging from 2 t 0  13 were t e s t e d  a t  Mach numbers up t o  0.92. 
attempt i s  made t o  co r re l a t e  t he  da t a  with three-dimensional-flow theory, 
bu t  an examination of t he  data i s  made on the  b a s i s  of reference theo- 
r e t i  c a1 values obtained from t h e  two-dimensional incompres sible-f low 
theory. On t h i s  basis a reduction i n  aspect  r a t i o ,  i n  general ,  increased 
the  r a t i o  of t h e  experimental f l u t t e r  speed t o  t h e  calculated f l u t t e r  
speed. The analysis  a l so  indicated t h a t  f o r  a given aspect  r a t i o ,  t h e  
f lut ter-speed r a t i o  decreased s l igh t ly  as t h e  Mach number w a s  increased. 

No genera l  

INTRODUCTION 

I n  t h e  problem of f l u t t e r ,  accurate evaluat ion of t h e  e f f e c t s  of 
f i n i t e n e s s  of span and of compressibil i ty has been d i f f i c u l t .  The 
appl ica t ion  of a two-dimensional incmpressible-flow analysis t o  t h e  
f l u t t e r  problem of wings of la rge  aspect r a t i o ,  i n  t he  neighborhood of 6 
and above, has been su f f i c i en t ,  i n  most cases of low-speed a i r c r a f t ,  t o  
y i e l d  an engineering solut ion.  For a i r c r a f t  designed f o r  high subsonic 
speeds, t he  appl ica t ion  of a two-dimensional incompressible-flow analysis 
needs some modification. Moreover, the appl ica t ion  a l s o  required modifi- 
ca t ion  f o r  low-aspect-ratio wings where the  f l o w  p a t t e r n  devia tes  t o  a 
considerable ex ten t  from the  assumption of two-dimensional f low.  

The subjec t  of aspect-rat io  e f f ec t s  on f l u t t e r  has been d e a l t  with 
t h e o r e t i c a l l y  by the  appl ica t ion  of t heo re t i ca l  a i r  forces  f o r  three-  
dimensional flow on an o s c i l l a t i n g  w i n g .  Despite t h e  m a n y  t h e o r e t i c a l  
inves t iga t ions  of these  air  forces  ( r e f s .  1 t o  lo), t he  theory i s  s t i l l  

'Supersedes dec la s s i f i ed  NACA RM L5OC15a, by E. Widmayer, Jr., W. T. 
Lauten, Jr., and S. A. Clevenson. 
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Tncanplete, even f o r  the  incompressible case. This incmpleteness  i s  
due par t ly  t o  the d i f f i c u l t y  of mathematically representing the  physical  
phenomena and p a r t l y  t o  the approximations necessary t o  obtain a soh- 
t i o n .  Certain of these approximations are i n  doubt, p a r t i c u l a r l y  those 
associated with t i p  e f f e c t s .  Reference 11 proposes a method t o  account 
b e t t e r  f o r  the  physical phenomena i n  t h e  region of the  t i p .  
various methods are  d i f f i c u l t  and laborious t o  apply numerically and 
consequently t h e i r  p r a c t i c a l  appl icat ion t o  f l u t t e r  has been l imited.  

* 

These 

With regard t o  experimental work, i n s u f f i c i e n t  d a t a  are avai lable  
on t h e  e f f e c t s  of aspect r a t i o  and of compressibil i ty on t h e  f l u t t e r  of 
wings. T h i s  lack of d a t a  i s  due i n  p a r t  t o  d i f f i c u l t i e s  i n  experimental 
technique and i n  p a r t  t o  d i f f i c u l t i e s  i n  i s o l a t i n g  t h e  various e f f e c t s .  
I n  order t o  supply addi t iona l  d a t a  on these  e f f e c t s ,  a series of t e s t s  
has been conducted t o  furn ish  information on the subject,  and t h e  r e s u l t s  
are reported herein.  Cantilever wings having aerodynamic aspect r a t i o s  
varying from 2 t o  1-3 and models with end p l a t e s  t o  simulate i n f i n i t e  
aspect r a t i o s  were employed. The experiments included a range of Mach * 
numbers up t o  0.92. No attempt i s  made t o  cor re la te  the  d a t a  with the  
various threedimensional  theor ies .  However, it i s  convenient and u s e f u l  
t o  employ two-dimensional incompressible-flaw theory (ref.  12) t o  
es tab l i sh  reference values t o  serve as a b a s i s  f o r  comparison and discus- 
s ion of the  r e s u l t s .  
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SYMBOIS 

w i n g  semichord, f t  

w i n g  chord, measured perpendicular t o  leading edge, i n .  

wing le rg th ,  measured along leading edge, i n .  

mass of wing, s l u g s / f t  

geometric aspect r a t i o ,  Z / C  

2% aercdynamic aspect r a t i o ,  

XO 

x1 

a 

t h e o r e t i c a l  Mach number a t  which sonic ve loc i ty  i s  first 
a t ta ined  over wing sec t ion  a t  zero l i f t  

d is tance  of e l a s t i c  axis fram leading edge, percent chord 
I 

distance of center  of grav i ty  from leading edge, percent chord 
L 

1 - - 
100 
2x0 nondimensional e l a s t i c  axis posi t ion,  

L 
8~ 
1~ 

i 7 
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1 r?ondimensional center-of-gravity posi t ion,  - - 2% 
100 

nondimcnsional radius  of gyration of w i n g  about e l a s t i c  axis 

s t r u c t u r a l  damping coef f ic ien t  i n  to r s ion  

s t r u c t u r a l  damping coef f ic ien t  i n  first bending 

2 t o r s i  onaL s t  i f f  nes s , lb- in  . 
bending s t i f f n e s s ,  lb- in .  

f i r s t  bendir4 n a t u r a l  frequency, cps 

2 

second bendirg na tu ra l  frequency, cps 

f i r s t  to r s ion  n a t u r a l  frequency, cps 

f i rs t  to r s ion  na tu ra l  frequency r e l a t i v e  t o  e l a s t i c  =is, cps 

experimental f i u t t e r  frequency, cps 

reference f l u t t e r  frequency, cps 

dens i ty  of t e s t i n g  medium at  time of f l u t t e r ,  slugs/cu f t  

dynamic pressure at f l u t t e r ,  l b j s q  t’t 

experimental f h t t e r  speed, mph 

reference f l u t t e r  speed, mph 

Mach number at  f l u t t e r  

wiw massdens i ty  r a t i o  a t  f l u t t e r ,  firpb*/m 

MODELS 

111 order t o  obtain a des i red  range of f l u t t e r  speeds, d i f f e r e n t  
types of construct ion were used f o r  the models; same models were made of 
solid spruce, some were made of balsa  wood with v a r i o w  aluminum-alloy 
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i n s e r t s ,  and some were made of rib-and-fabric construction. The model 
cross  sections and dimensions are shown i n  f igu res  1 t o  6. I n  determining 
t h e  aerodynamic aspect r a t io ,  r e f e r r ed  t o  he re in  as aspect r a t i o ,  the  
tunnel  wall i s  considered t o  a c t  as a r e f l e c t i n g  surface and t h e  aspect  
r a t i o  i s  assumed t o  be twice t h e  geometric aspect r a t i o .  Models incor-  
porating a range of aspect ra t ios  (13, 12, 9, 7, 6, 4, and 2) were inves- 
t i g a t e d  and t h e i r  pe r t inen t  geometric s t r u c t u r a l  p roper t ies  are given i n  
table I. The number preceding t h e  dash i n  t h e  model designations ind i -  
ca t e s  the aspect r a t i o .  

Models 12-1, 12-2, 9-1, 9-2, 6-1, and 6-2 were of balsa and aluminum- 
alloy plate  construction. 
down t o  aspect r a t i o  9 t o  make models 9-1 and 9-2, respect ively.  
cu t t i ng  t o  A = 6 produced m o d e l s  6-1 and 6-2. 
m o d e l s  are shown i n  f igu re  1. 

Models 12-1 and 12-2 ( A  = 12) were later cu t  
Further  

The cross  sec t ions  of these  

Sketches of t he  la rge  aspect-rat io  models (12-3 t o  12-7) showing 
These t h e i r  a i r f o i l  sec t ions  and construct ion are given i n  f igu re  2. 

models had 8-inch chords and 48-inch lengths  (aspect  r a t i o  12) and t h e  
same general s t r u c t u r a l  design as models 12-1 and 12-2. 
which had a chord of 4 inches and a length of 26 inches (aspect  r a t i o  l3), 
had an unconventional sec t ion  f o r  which t h e  ordinates  are given i n  
f igu re  3. 

Model 13-1, 

The aspect-ratio-7 models (7-1 t o  7-6) s h a m  i n  figure 4, consis ted 
of spanwise balsa laminations glued t o  a duralumin box made from 0.016- 
inch sheet. The aspect-ratio-4 models (4-1 and 4-2) shown i n  f igu re  5 
were of so l id  spruce construction. To reduce the  t o r s i o n a l  s t i f f n e s s  of 
these models, chordwise s l o t s  were cu t  from the  trailing edge forward, 
perpendicular t o  t h e  plane of t he  wing, and were spaced at i n t e r v a l s  
of 1 inch. 

Figure 6 shows the  d e t a i l s  of t h e  aspect-ratio-2 models. I n  order 
t o  obtain f l u t t e r  a t  t h i s  low aspect r a t i o ,  t h i n  sec t ions  and rib-and- 
f ab r i c  construction were employed. Model 2-5 w a s  a 13' sheared swept- 
back w i n g  of  s i m i l a r  construction. 

EQUIPMENT 

The tests were conducted i n  t h e  Langley 4.5-foot f l u t t e r  research 
tunnel  which i s  of t h e  closed-throat, s ing le- re turn  type employing 
e i t h e r  air, Freon-12, or a mixture of air and Freon-12 as a t e s t i n g  
medium at absolute pressures v q f n g  from 4 inches t o  30 inches of 
mercury. I n  Freon-12 at standard pressure a.nd temperature t h e  speed of 
sound i s  324 miles per  hour and t he  dens i ty  i s  0.0106 s lug  per  cubic foot .  

L 
8 
1 
7 

# 

c 



The maximum choking Mach number f o r  these tests w a s  approximately 0.92. 
The Reynolds number range w a s  f r a n  0.434 X 10 6 t o  5 X 10 6 . 

It m a y  be appropriate t o  mention t h a t  t he  va r i a t ion  of 7 ,  t h e  
r a t i o  of spec i f ic  heats  a t  constant pressure and at  constant volume, 
r e su l t i ng  from the  use of air, Freon-12, or a mixture of air and Freon-12 
i s  thought t o  have r e l a t i v e l y  minor e f fec t  on f l u t t e r  as compared with t h e  
e f f e c t s  associated with Mach number. Theoretical  considerations f o r  a 
s t a t iona ry  a i r f o i l  i n  steady flow which permit t h e  inc lus ion  of 7 (see, 
f o r  example, r e f .  13) tend t o  subs tan t ia te  t h i s ,  a t  least f o r  t h e  r w e  
of Mach numbers concerned. Reference 14 presents  a comparison of f l u t t e r  
d a t a  taken i n  air  with f l u t t e r  d a t a  taken i n  Freon-12, which ind ica tes  no 
appreciable e f f e c t s  of t he  index 7 of the  t es t  medium. 

The models were  mounted from t h e  top of t he  tunnel  as can t i l eve r  
beams with r i g i d  bases. Two s e t s  of s t r a i n  gages were fastened near 
t h e  roo t  of each model, one s e t  for recording p r inc ipa l ly  t h e  bending 
deformations and the  other set  f o r  recording p r inc ipa l ly  the  t o r s i o n a l  
de f ormat i ons . 

Models with end p l a t e s  were used i n  t h e  tunnel  t o  simulate i n f i n i t e  
1 
4 

=Feet r a t i o .  The end p l a t e s  were made of - - inch  s tee l  p l a t e  with 

beveled edges, had i5-inch chords, spmmc? the  tumel .  The gap 
between w i n g  t i p  and end p l a t e  was of the o r b r  of 0.X t o  0.02 inch. 
A s t r u t  w a s  added from t h e  midspan of the  p l a t e  t o  the  floor of the  tun- 
n e l  i n  order t o  minimize the  def lect ion of the  p l a t e .  

During each tes t  t h e  tunnel  speed was slowly increased u n t i l  t h e  
model f l u t t e r e d .  A t  t h i s  ins tan t ,  the tunnel  conditions were noted and 
an osci l lograph record of t h e  s t r a i n  gage output w a s  taken. The tunnel  
speed was then immediately reduced i n  an e f f o r t  t o  prevent des t ruc t ion  
of t he  model. The experimental f l u t t e r  speed Ve, t h e  dens i ty  of t e s t i n g  
medium p, and ' the  Mach number M were determined from t h e  tunnel  data ,  
and the  experimental f l u t t e r  frequencies were determined from t h e  osc i l -  
lograms. The na tu ra l  frequencies of the m d e l s  i n  bending a d  to r s ion  
a t  zero airspeed were recorded before each t e s t .  The wing damping coef- 
f i c i e n t s  (ref.  15) i n  bending and tors ion  

from t h e  decay records of t h e  na tura l  frequencies.  

and g 4  were obtained 
(ghl 
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RESULTS AND DISCUSSION 

. 

The r e s u l t s  of the  invest igat ion are l i s t e d  i n  d e t a i l  i n  t a b l e  11. 
While the d a t a  presented do not allow a quant i ta t ive c r i t i c a l  appra isa l  
of t h e  various ex is t ing  three-dimensional-flow theories ,  s u f f i c i e n t  
information per ta ining t o  t e s t  conditions i s  supplied t o  permit an engi- 
neering evaluation of these theories  with respect  t o  t h e i r  appl icat ion 
t o  a f l u t t e r  analysis.  As a b a s i s  f o r  presenting- and comparing r e s u l t s ,  
r a t i o s  o f  experimental f l u t t e r  v e l o c i t i e s  V e  t o  reference f l u t t e r  
ve loc i t ies  
t h e  e f fec ts  of aspect r a t i o  and Mach number. 
i t y  
idealized, uniform, i n f i n i t e ,  r i g i d  wing mounted on springs i n  an incom- 
pressible medium and uses uncoupled f i r s t  bending and uncoupled f i r s t  
tors ion  frequencies. I n  the  present work where the  theory i s  applied t o  
cantilever wings, the first bending ( n a t u r a l )  coupled frequency and t h e  
uncoupled f i rs t  tors ion  frequency were used. The densi ty  used w a s  t h a t  
of t h e  tes t ing  medium measured at t h e  time of f l u t t e r .  The calculat ions 
a l s o  yield a corresponding reference f l u t t e r  frequency 
f u l  i n  camparing frequency da ta .  

VR arc determined s o  t h a t  the  d a t a  m a y  indicate  more c l e a r l y  
The reference f l u t t e r  veloc- 

VR is  calculated by the method of reference 12, which assumes an 

fR  which i s  use- 

It may  be remarked t h a t  the t e s t  procedure employed i n  t h i s  work 
w a s  adapted t o  obtaining over-all  r e s u l t s  conveniently and t o  obtaining 
reference t h e o r e t i c a l  values easily. This work, then, es tab l i shes  orders 
of magnitude of integrated e f f e c t s  espec ia l ly  usefu l  f o r  engineering 
purposes. This procedure has the  disadvantage t h a t  a more quant i ta t ive  
separation of the  e f f e c t s  of aspect r a t i o ,  mode shape, and Mach number 
i s  necessary t o  allow ref ined comparisons with avai lable  theor ies .  

The e f f e c t  of the use of first bending and f irst  tors ion  modal 
shapes i n  the  calculat ion of a t h e o r e t i c a l  f l u t t e r  speed was  i n v e s t i -  
gated by calculat ing f l u t t e r  speeds from t h e  theory of reference 16 f o r  
some of the wings reported.  The calculated speeds were i d e n t i c a l  t o  
those determined by reference 15. The f l u t t e r  speeds obtained f’rom 
these calculations involving mode shape are not  presented, b u t  were found 
t o  exceed VR 3y approximately 3 percent. 

The e f f e c t  of higher modes on a t h e o r e t i c a l  f l u t t e r  speed f o r  two- 
dimensional f l o w  could a l s o  be determined. 
r a t i o  i s  a function of modal shape i n  addi t ion t o  plan form, s o  t h a t  a 
comparison of experimental values involving higher modes with those 
experimental values involving only first bending and f i r s t  t o r s i o n  modes 
would be misleading. For t h i s  reason, i n  those cases where a d e f i n i t e  
departure from the first bending and first t o r s i o n  modes w a s  indicated 
by observation or by recorded f l u t t e r ,  the  data,  while presented, were 
not  corisilJLered for  p l o t s  or i n  the analysis  of t h e  aspect r a t i o  and 

However, t h e  e f f e c t  of aspect 

L 
8 
1 
7 
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compressibil i ty e f f e c t s .  The higher-mode f l u t t e r  i s  indicated i n  t h e  
r e m a s k s  column of table II. Also indicated i n  t h e  remarks are those 
cases where apparent f l u t t e r  w a s  noted v isua l ly  but  subsequent inspec- 
t i o n  of t h e  oscillograms indicated tha t  the  wing d i d  not f l u t t e r .  The 
Ve i n  these cases i s  the  speed a t  which the  d a t a  were taken and does not 
ind ica te  an experimental f l u t t e r  speed as defined i n  t h e  sec t ion  e n t i t l e d  
"Symbols." For the  cases i n  which higher-mode f l u t t e r  w a s  observed, sane 
comparison might be worth while i n  which the  reference f l u t t e r  speed i s  
taken as the t h e o r e t i c a l  value which is  determined when higher modes are 
included. 

Summary p l o t s  t o  i l l u s t r a t e  the  s ign i f icant  e f f e c t s  of aspect r a t i o  
and Mach number on the f l u t t e r  speed of t h e  various models are presented 
i n  f igures  7 and 8. 
s i g n i f i c a n t  ranges, the  d a t a  i n  figure 7 f o r  Mach numbers above 0.6 and 
i n  f igure  8 f o r  aspect r a t i o s  above 6 are shown by s o l i d  symbols. 

For convenience i n  dis t inguishing d a t a  points  i n  t h e  

I n  f igure  7, graphical  representation of the  d a t a  i s  m a d e  showing 
the e f f e c t  of aspect r a t i o  on V e / V ~ .  The d a t a  f o r  A = 7 are  somewhat 
i n  doubt because of the absence of precise measurements of the  model 
parameters. The presence of t h e  tunnel-wall boundary layer  ac ts  t o  
reduce the  e f fec t ive  aspect r a t i o  on a l l  models, t h e  wings of lower 
aspect ratici beiag nos t  s e n s i t i - e  t o  t h i s  fac tor .  Since the  s t r u c t u r a l  
requiremenis to &t&i fk;tter neecssiteted the xse of w i r x s  iiavi i ig va-- 
iolis thick-ness ratios: the  r e s u l t s  also may be somewhat influenced by 
the  thickness r a t i o .  However, there  is a discernible  t rend f o r  t h e  r a t i o  
Ve/VR t o  increase from an aslmptotic v a h e  A i s  dec_peased. It m q ~  
also be seen t h a t  f o r  the  higher values of A the  reference ve loc i ty  is, 
i n  most instances,  c lose to ,  bu t  less than, the ekperimental value of t h e  
Y i u  i Lei- vckct~.--. 

I n  f igure 8, Ve/vR i s  p lo t ted  against  Mach number. It may be noted 

Ve/VR t h a t  f o r  a s p e c i f i c  aspect r a t i o  there exists a t rend f o r  t h e  r a t i o  

t o  decrease as the  Mach number increases. 
at simulated i n f i n i t e  aspect r a t i o ,  an end p l a t e  w a s  placed near t h e  t i p  of 
an aspect-ratio-4 w i n g .  
e f f e c t  of the  gap between the  wing t i p  and pla te ,  it may be seen i n  f i g -  
ure 8 t h a t  the end p l a t e  decreases the value of the  r a t i o  Ve/VR 
pared with the  values obtained without an end plate ,  as w e l l  as decreasing 
the  value b e l w  t h a t  obtained f o r  the aspect-ratio-12 models. 
son of values of f o r  the  a s p e c t - r a t i o 4  model without an end p l a t e  
t o  t h e  aspect-ratio-4 model with an end p l a t e  showed a decrease i n  t h e  
value of the  r a t i o  of approximately 12 percent which m8y be a t t r i b u t e d  t o  
the  e f f e c t  of aspect r a t i o .  

I n  an attempt t o  study f l u t t e r  

While it i s  not possible t o  ascer ta in  the prec ise  

a s  cam- 

A campasi- 

Ve/VR 
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CONCLUDING mMAFKS 

Some f l u t t e r  d a t a  have been presented f o r  cant i lever  w i n g  models 
t h a t  i l l u s t r a t e  some e f f e c t s  of aspect  r a t i o  and Mach number on f l u t t e r .  
The aspect r a t i o  varied frm 2 t o  13 and t h e  range of Mach number 
extended fram 0.2 t o  0.92. A 

No general  attempt i s  made t o  co r re l a t e  t he  d a t a  with theory; how- 
ever,  a comparison i s  made with a theory t h a t  assumes a two-dimensional 
incompressible f l a w .  On the  bas i s  of t h i s  comparison, analysis  of t h e  
d a t a  indicated t h a t  a reduction i n  aspect r a t i o ,  i n  general, increased 
t h e  r a t i o  of t he  experimental f l u t t e r  speed t o  calculated f l u t t e r  speed. 

decreases s l i g h t l y  as the  Mach number i s  increased. 

L 
8 
1 
7 The comparison a l s o  indicated t h a t  f o r  a given aspect r a t i o ,  t h i s  r a t i o  

Langley Research Center, 
National Aeronautics and Space Pdministration, 

Langley Field, Va. ,  March 15, 1950. 
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Figure 3.- D i a g r a m  of cross sec t ion  and coordinates of wing model 13-1. 
A = 13. Wing length, 26 inches. 
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Figure 8.- Ratio of experimental f l u t t e r  speed divided by reference 

f l u t t e r  speed (ve/vR) against  Mach number fo r  various aspect 
ra t ios .  

NASA - Langley Field, Va. L-817 

~ 


